		Приложение № 1
!!	"	20

AKT

разграничения балансовой принадлежности тепловых сетей и эксплуатационной ответственности сторон.

Настоящий акт составлен представителем теплоснабжающей организации АО «М	Мурманская ТЭЦ»
	с одной стороны,
должность, фамилия, имя, отчество	
и представителем Абонента	
(наименование организации, адрес, должность, фамилия, имя, с	отчество представителя)
с другой стороны, в том, что:	
1.1 На балансе АО «Мурманская ТЭЦ» находятся тепловые сети	
от	
до	
другое теплоэнергетическое оборудование	
1.2 На балансе Абонента находятся тепловые сети	
ОТ	
до	
т/сети, другое теплоэнергетическое оборудование	
2 Точкой раздела балансовой принадлежности тепловых сетей является	
3 Эксплуатационная ответственность сторон устанавливается	
согласно балансовой принадлежности, конкретно на оборудовании	
4 Обслуживание точек раздела балансовой принадлежности теплосетей будет с	осуществляться
персоналом	
Представитель АО «Мурманская ТЭЦ»	
фамилия, имя, отчество М.П.	
Представитель Абонента	
фамилия, имя, отчество М П	

Договорной объем тепловой энергии

Δ	бонент:	

Р	асчетная	нагимзка	тл	расуол	теплоно	ситепа.
1	асчетная	Hai Dyska	$\nu_{\rm L}$	раслод	TEILIOHO	сителя.

	Всего	отопление	ГВС	вентиляция	технология
Гкал/час					
м3/час					

	t					горя	гчее	Потери	Потери	Всего
Месяц	наружн.	кол-во	отопле-	венти-	техноло-	водосна	абжение	через	С	расход
	воздуха	часов в	ние	кијіки	гия	кол-во		изоляцию	утечкой	тепла
	сред.	месяц				часов в		в т/сетях		в месяц
	месяч.		Гкал	Гкал	Гкал	месяц	Гкал	Гкал	Гкал	Гкал
январь										
февраль										
март										
апрель										
май										
июнь										
июль										
август										
сентябрь										
октябрь										
ноябрь										
декабрь										
Итого:										

Энергоснабжающая организация	Абонент
мп	мп

Порядок определения часовых тепловых нагрузок, используемых при заключении договора теплоснабжения.

Общие положения.

Настоящий Порядок определяет расчет часовых тепловых нагрузок, используемых для расчета договорного объема тепловой энергии.

Порядок расчета.

1. Отопление

1.1. Максимальная часовая тепловая нагрузка отопления принимается по типовым или индивидуальным проектам зданий.

В случае отличия принятого в проекте значения расчетной температуры наружного воздуха для проектирования отопления от действующего нормативного значения для конкретной местности, производится пересчет приведенной в проекте расчетной часовой тепловой нагрузки отапливаемого здания по формуле:

$$Q_{o.p} = Q_{o.np} \; rac{t_{_6} - t_{_{H.p.o.p}}}{t_{_6} - t_{_{H.p.o.np}}} \;$$
 , где:

 $Q_{o.p}\,$ – максимальная часовая тепловая нагрузка отопления здания, Гкал/ч;

 $Q_{o.np}$ – максимальная часовая тепловая нагрузка отопления здания по типовому или индивидуальному проекту, Гкал/ч;

 t_{s} — расчетная температура воздуха в отапливаемом здании, принимается в соответствии со СНиП 41-01.2003 1 или по Справочнику 2 , $^{\circ}$ C;

 $t_{\mu,p,o}$ – расчетная температура наружного воздуха для проектирования отопления в местности, где расположено здание, принимается в соответствии со СНиП 23-01-99³, °C. Указанная температура в г. Мурманске равна -27°C.

 $t_{n,p,o,np}$ — расчетная температура наружного воздуха для проектирования отопления по типовому или индивидуальному проекту, °C.

1.2. При отсутствии проектной информации максимальная часовая тепловая нагрузка отопления отдельного здания определяется по укрупненным показателям:

$$Q_{o.p} = \alpha V q_o K_{ye} (t_e - t_{{\scriptscriptstyle H.p.o}}) 10^{-6}$$
 , где:

 $Q_{o,p}$ – максимальная часовая тепловая нагрузка отопления здания, Гкал/ч;

 α — поправочный коэффициент, учитывающий отличие расчетной температуры наружного воздуха для проектирования отопления $t_{n,p,o}$ в местности, где расположено рассматриваемое здание, от $t_{n,p,o}$ = -30°C, при которой определено соответствующее значение q_o , принимается по Справочнику²;

V – объем здания по наружному обмеру, м³;

 q_o – удельная отопительная характеристика здания при $t_{\rm {\it h.p.o}}$ = -30°C, принимается по Справочнику², при отсутствии подходящих по назначению зданий принимается по подобию или по иной справочной информации, ккал/м³ч°С. При наружном строительном объеме, отличном от приведенных его значений, удельная отопительная характеристика определяется интерполяцией.

 K_{y_6} — коэффициент увеличения удельной отопительной характеристики - при средней скорости ветра в течение отопительного сезона в г. Мурманске 5,6 м/сек в соответствии с СНиП 23-01-99 3 - 12 4 %.

 t_s — расчетная температура воздуха в отапливаемом здании, принимается в соответствии со СНиП 41-01.2003 1 или по Справочнику 2 , $^{\circ}$ C;

 $t_{n.p.o}$ – расчетная температура наружного воздуха для проектирования отопления в местности, где расположено здание, принимается в соответствии со СНиП 23-01-99 3 , $^{\circ}$ C.

Значение V, M^3 , принимается по информации типового или индивидуального проектов здания или бюро технической инвентаризации.

При наличии в здании отапливаемого подвала к полученному объему отапливаемого здания добавляется 40% объема этого подвала. Строительный объем подземной части здания определяется как произведение площади горизонтального сечения здания на уровне его I этажа на высоту подвала.

1.3. При отсутствии проектной информации и невозможности определения максимальной часовой тепловой нагрузки отопления по укрупненным показателям, указанная нагрузка определяется по установленной поверхности нагревательных приборов по методике, приведенной в Справочном пособии⁴.

2. Приточная вентиляция

2.1. При наличии типового или индивидуального проектов здания и соответствии установленного оборудования системы приточной вентиляции проекту максимальная часовая тепловая нагрузка вентиляции применяется по проекту с учетом различия значений расчетной температуры наружного воздуха для проектирования вентиляции, принятого в проекте, и действующим нормативным значением для местности, где расположено здание.

Расчет производится по формуле:

$$Q_{\!\scriptscriptstyle 6.p} = \! Q_{\!\scriptscriptstyle 6.np} \; rac{t_{\scriptscriptstyle e} - t_{\scriptscriptstyle n.p.e}}{t_{\scriptscriptstyle e} - t_{\scriptscriptstyle n.p.e,np}} \;$$
 , где:

 $Q_{e.p}$ – максимальная часовая тепловая нагрузка приточной вентиляции, Гкал/ч;

 $Q_{\rm e,np}$ – максимальная часовая тепловая нагрузка приточной вентиляции по проекту, Гкал/ч;

 t_s — расчетная температура воздуха в отапливаемом здании, принимается в соответствии со СНиП 41-01.2003 1 или по Справочнику 2 , $^{\circ}$ С;

 $t_{n,p,s}$ — расчетная температура наружного воздуха для проектирования приточной вентиляции в местности, где расположено здание, принимается в соответствии со СНиП 23-01-99³, °C;

 $t_{n,p,s,np}$ — расчетная температура наружного воздуха, при которой определена тепловая нагрузка приточной вентиляции в проекте, °C.

2.2. При несоответствии установленного оборудования системы приточной вентиляции проекту, расчетная часовая тепловая нагрузка вентиляции применяется по паспортам вентиляционных установок.

3. Горячее водоснабжение

3.1. Средняя часовая тепловая нагрузка горячего водоснабжения потребителя тепловой энергии $Q_{\varepsilon,cp}$, Гкал/ч, определяется по формуле:

$$Q_{e.cp} = \frac{a \, m \, n \, C \, \rho \left(t_{e.s} - t_{x.s}\right)}{168} \, 10^{-9}$$
 , где:

a – норма расхода воды на единицу потребления, л/сутки или л/час. Норма должна быть утверждена местным органом самоуправления, при отсутствии утвержденных норм принимается по таблице приложения А СП $30.13330.2020^5$;

m – количество единиц измерений - количество работающих, учащихся в учебных заведениях и т.д.;

n – график работы в неделю, дней или часов, зависит от размерности a;

C – теплоёмкость воды, ккал/кг °C;

 ρ – плотность горячей воды, кг/м³. Значение плотности следует принимать в соответствии с температурой $t_{2.6}$ =60°C;

 $t_{z.s}$ — температура горячей воды, °C, для закрытых систем теплоснабжения принимается $t_{z.s}$ =60°C;

 t_{x_6} – температура холодной водопроводной воды, °С. Принимается t_{x_6} =5°С;

168 – число часов в неделю.

торон

Энергоснабжающая организация	Абонент
М.П.	М.П.

¹СНиП 41-01-2003. Отопление, вентиляция и кондиционирование (приняты и введены в действие Постановлением Госстроя РФ от 26.06.2003 № 115)

²Манюк В.И., Каплинский Я.И. и др. Наладка и эксплуатация водяных тепловых сетей. Справочник.-.М.:Стройиздат, 1988

³СНиП 23-01-99*. Строительная климатология (приняты Постановлением Госстроя РФ от 11.06.1999 N 45) (ред. от 24.12.2002)

⁴Апарцев М.М. Наладка водяных систем централизованного теплоснабжения. Справочно-методическое пособие.-.М.: Энергоатомиздат, 1983

⁵ "СП 30.13330.2020. Свод правил. Внутренний водопровод и канализация зданий. СНиП 2.04.01-85*"(утв. и введен в действие Приказом Минстроя России от 30.12.2020 N 920/пр)